(1) Load data
(2) attach(data-sample)
(3) summary(data-sample)
(4) ced.del <- cbind(sDel, sNoDel)
(5) summary(ced.del)
(6) duckie <- glm(ced.del ~ cat + follows + factor(class), family=binomial)
(7) duckie
(8) summary(duckie)
(9) anova(duckie, test="Chisq")
(10) plot(duckie)
Revised:
fico <- read.table("/home/brent/Documents/fico.csv", header=TRUE, sep=",",
na.strings="NA", dec=".", strip.white=TRUE)
attach(fico)
duckie <- glm(approved ~ creditScore, family=binomial)
summary(duckie)
------
> summary(duckie)
Call:
glm(formula = approved ~ creditScore, family = binomial)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.408 -1.338 0.959 1.010 1.149
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.223592 17.177351 -0.362 0.717
creditScore 0.009605 0.024893 0.386 0.700
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 20.190 on 14 degrees of freedom
Residual deviance: 20.038 on 13 degrees of freedom
AIC: 24.038
Number of Fisher Scoring iterations: 4
Use the intercept and the credit score to solve for the predicted probability:
With the coefficient estimates we have:
No comments:
Post a Comment